ASSESSING OFFSHORE WIND CONDITIONS: MEASUREMENT, MODELING, AND ANALYSIS APPROACHES
GREAT LAKES WIND ENERGY DEVELOPMENT IN NEW YORK STATE

Matthew Baker, Assistant Director of Wind Developer Services
AWS Truepower LLC
mbaker@awstruepower.com
Talk Topics

- The Need for Atmospheric Data
- Conventional Sources vs. New Approaches
- Combining Measured Data with Modeled Data
Dynamic External Environment

Wind and waves are the primary external conditions affecting the design and cost of offshore wind turbines

Source: NREL
Atmospheric Data for Offshore Wind Plants

Applications
- Defining Environmental Conditions & Extremes
- Structural Loads
- Project Layout
- Performance/Energy
- Energy Value/Load Matching

- **Wind Speeds** – annual, monthly, hourly, sub-hourly
- **Speed Frequency Distribution** - # hrs/yr within discrete speed intervals
- **Wind Shear** – rate of change of wind speed with height
- **Wind Veer** – change of direction w/height
- **Turbulence Intensity** – std dev of speeds sampled over 10-min period as a function of the 10-min mean speed
- **Wind Direction Means, Time Series & Distribution** – joint with speed
- **Extreme Gusts** (3- and 5-sec) and **Return Periods** (50- and 100-yr)
- **Others**: air/sea temp. (stability), RH, pressure, density, solar, lightning
Great Lakes Vs. Oceans

- Continental climate
 - More land influences
 - Colder; lake ice
- More active weather
- Limited year-round lake data
 - Buoys don’t winter over
- Smaller waves
Conventional Sources of Wind Data

- **Surface**
 - Buoys and Coastal Marine Automated Network Stations (C-MAN) - NDBC
 - Coastal met. stations
 - Ships (seasonal, moving)
 - Voluntary observing ships
 - Commercial aircraft

- **Remote Sensing**
 - Weather balloons from land
 - Satellite (QuikSCAT, SAR)
Weaknesses of Conventional Data

- Low elevation measurement (<10 m)
- Low number and density of stations
 - Some buoys removed in winter
- Ship data – limited value
- Balloon trajectory is wind dependent
- Satellite coastal resolution (QuikScat)
- Accuracy (typically 1-2 m/s)

» Needed: Wind Modeling & New Measurements
Best Practice Assessment Approaches

- **Tall Met. Mast(s)**
 - Most credible & widely accepted
 - Multiple heights; rugged sensors
- **Complemented by:**
 - Lidar/sodar
 - Project weather buoys
 - Satellite imagery
- **Regional Weather Conditions**
- **Adjustments for Height, 2D Space & Climatology**
- **Mesoscale Modeling**

Methods must be credible to 3rd parties and ‘bankable’
Lake Condition Assessment Approaches

- Specialized sensors on the offshore met tower
- Dedicated onsite buoys
- Acoustic Doppler Current Profiler (ADCP)
- Other Inputs
 - Satellite data (waves)
 - Regional and historic data sources
 - CODAR (sfc current & waves)

Source: NOAA Great Lakes Ice Atlas
Lidar-Based Monitoring Approaches

Profiling
- Leosphere / NRG Windcube
- Natural Power ZephIR

Scanning
- Lockheed WindTracer
- Michigan Aerospace Site Assessor
- Sgurr Galion

Buoy-Based
- AXYS Technologies Wind Sentinel
- Others in development
Wind Modeling

- Wind maps developed from 3-D mesoscale numerical weather models
- Combine boundary layer properties & atmospheric databases to simulate all physics of the atmosphere
- Results independently validated

Key Inputs:
- Global Reanalysis Data (NCEP/NCAR)
- Water Surface Temperatures
- Elevation & Land Cover
- Differential Vegetation Index
- Ice Cover
Wind Modeling

Key Outputs:

- Speed/Dir. Freq. Distributions @ Multiple Heights
- Shear & Turbulence Intensity
- Hourly Time Series Values
- Air Temp, Density, Pressure, RH
- Stability
Map Validations

Highest Confidence Stations - Offshore Atlantic

y = 0.9799x

R² = 0.77

Great Lakes Model Validation

R² = 0.6839

- AWST Validation: R² = 0.74
- NREL Validation: R² = 0.68
Conclusions

• Wind assessment needs are well understood, but innovative approaches are necessary
• Offshore assessment differs from land-based assessment and is more reliant on remote sensing technologies and modeling
• Modeling is a powerful tool for understanding and predicting dynamic wind flow structures
Thank you!

mbaker@awstruepower.com
awstruepower.com